Communications Manual

PSM1700 - PsimetriQ
PSM1735 - NumetriQ

PSM1700 firmware v1.65
PSM1735 firmware v1/60

08th June 2017
IMPORTANT SAFETY INSTRUCTIONS

This equipment is designed to comply with BSEN 61010-1 (Safety requirements for electrical equipment for measurement, control, and laboratory use) – observe the following precautions:

- Ensure that the supply voltage agrees with the rating of the instrument printed on the back panel before connecting the mains cord to the supply.

- This appliance must be earthed. Ensure that the instrument is powered from a properly grounded supply.

- The inputs must not be connected to signals greater than is indicated on the front panel.

- Keep the ventilation holes on the underneath and sides free from obstruction.

- Do not operate or store under conditions where condensation may occur or where conducting debris may enter the case.

- There are no user serviceable parts inside the instrument – do not attempt to open the instrument, refer service to the manufacturer or his appointed agent.

Note: Newtons4th Ltd. shall not be liable for any consequential damages, losses, costs or expenses arising from the use or misuse of this product however caused.
ABOUT THIS MANUAL

This manual gives details of the communication commands recognized by the PSM17xx series of instruments over RS232, LAN or GPIB. For more general operating instructions for the instrument refer to the specific user manual.

Each command is listed alphabetically with details of any arguments and reply. A one line summary of each command is given in the appendix. Although most of the commands apply to all instruments in the range there are some commands that are specific to one instrument or another.

The information in this manual is believed to be accurate and complete but Newtons4th Ltd cannot accept any liability whatsoever for any consequential damage or losses arising from any errors, inaccuracies, or omissions.
CONTENTS

1 Using remote control ... 1-1
 1.1 Standard event status register 1-3
 1.2 Serial Poll status byte 1-4
 1.3 RS232 connections ... 1-5
 1.4 Data streaming ... 1-6

2 Communication commands 2-1
 *CLS .. 2-1
 *ESE .. 2-2
 *ESR? .. 2-3
 *IDN? .. 2-4
 *OPC? .. 2-5
 *RST ... 2-6
 *SRE ... 2-7
 *STB? .. 2-9
 *TRG ... 2-10
 *TST? ... 2-11
 *WAI ... 2-12
 ABORT ... 2-13
 ACTRIM ... 2-14
 ALARM ... 2-15
 ALARM1 ... 2-17
 ALARM2 ... 2-18
 ALARME ... 2-19
 AMPLIT ... 2-21
 ANALOG ... 2-22
 BANDWI ... 2-23
 BEEP ... 2-24
 BLANKI ... 2-25
 CONFIG ... 2-26
 COUPLI ... 2-28
 CYCLES ... 2-29
 DATALO ... 2-30
 DAV? ... 2-32
 DAVER .. 2-33
 DELAY .. 2-35
 FILTER ... 2-36
 FRA ... 2-37
 FREQUE ... 2-39
 FSWEEP ... 2-40
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAINPH</td>
<td>2-41</td>
</tr>
<tr>
<td>HARMON</td>
<td>2-43</td>
</tr>
<tr>
<td>HOLD</td>
<td>2-45</td>
</tr>
<tr>
<td>INPUT</td>
<td>2-46</td>
</tr>
<tr>
<td>INTYPE</td>
<td>2-47</td>
</tr>
<tr>
<td>KEYBOA</td>
<td>2-48</td>
</tr>
<tr>
<td>LCR</td>
<td>2-49</td>
</tr>
<tr>
<td>LOWFREQ</td>
<td>2-51</td>
</tr>
<tr>
<td>MARKER</td>
<td>2-52</td>
</tr>
<tr>
<td>MODE</td>
<td>2-53</td>
</tr>
<tr>
<td>OFFSET</td>
<td>2-54</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>2-55</td>
</tr>
<tr>
<td>PAV</td>
<td>2-56</td>
</tr>
<tr>
<td>PHASE</td>
<td>2-58</td>
</tr>
<tr>
<td>PHCONV</td>
<td>2-60</td>
</tr>
<tr>
<td>PHREF</td>
<td>2-61</td>
</tr>
<tr>
<td>POWER</td>
<td>2-62</td>
</tr>
<tr>
<td>PPORT</td>
<td>2-64</td>
</tr>
<tr>
<td>PROGRA</td>
<td>2-66</td>
</tr>
<tr>
<td>RANGE</td>
<td>2-68</td>
</tr>
<tr>
<td>RESOLU</td>
<td>2-69</td>
</tr>
<tr>
<td>REZERO</td>
<td>2-70</td>
</tr>
<tr>
<td>RUN?</td>
<td>2-71</td>
</tr>
<tr>
<td>SCALE</td>
<td>2-72</td>
</tr>
<tr>
<td>SHUNT</td>
<td>2-73</td>
</tr>
<tr>
<td>SINGLE</td>
<td>2-74</td>
</tr>
<tr>
<td>SPEED</td>
<td>2-75</td>
</tr>
<tr>
<td>SSWEEP</td>
<td>2-76</td>
</tr>
<tr>
<td>START</td>
<td>2-77</td>
</tr>
<tr>
<td>STATUS?</td>
<td>2-78</td>
</tr>
<tr>
<td>STOP</td>
<td>2-79</td>
</tr>
<tr>
<td>STREAM</td>
<td>2-80</td>
</tr>
<tr>
<td>SUSPEND</td>
<td>2-82</td>
</tr>
<tr>
<td>TFA</td>
<td>2-83</td>
</tr>
<tr>
<td>TXA</td>
<td>2-85</td>
</tr>
<tr>
<td>TXTEST</td>
<td>2-87</td>
</tr>
<tr>
<td>USER?</td>
<td>2-88</td>
</tr>
<tr>
<td>VECTOR</td>
<td>2-89</td>
</tr>
<tr>
<td>VERSIO?</td>
<td>2-91</td>
</tr>
<tr>
<td>VRMS</td>
<td>2-92</td>
</tr>
<tr>
<td>WAVEFO</td>
<td>2-94</td>
</tr>
<tr>
<td>ZERO</td>
<td>2-95</td>
</tr>
<tr>
<td>ZOOM</td>
<td>2-96</td>
</tr>
</tbody>
</table>
1 Using remote control

The instrument is fitted with an RS232 serial communications port as standard, and may have an IEEE488 (GPIB) interface or LAN interface fitted as an option. All the interfaces use the same ASCII protocol with the exception of the end of line terminators:

<table>
<thead>
<tr>
<th></th>
<th>Rx expects</th>
<th>Tx sends</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232</td>
<td>carriage return (line feed ignored)</td>
<td>carriage return</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and line feed</td>
</tr>
<tr>
<td>LAN</td>
<td>carriage return (line feed ignored)</td>
<td>carriage return</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and line feed</td>
</tr>
<tr>
<td>IEEE488</td>
<td>carriage return or line feed or EOI</td>
<td>carriage return</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with EOI</td>
</tr>
</tbody>
</table>

All the functions of the instrument can be programmed via either interface, and results read back. When the IEEE488 interface is set to ‘remote’ the RS232 port is ignored.

The commands are not case sensitive and white space characters are ignored (e.g. tabs and spaces). Replies from the instrument are always upper case, delimited by commas, without spaces.

Only the first six characters of any command are important – any further characters will be ignored. For example, the command to set the generator frequency is FREQUE but the full word FREQUENCY may be sent as the redundant NCY at the end will be ignored.

Fields within a command are delimited by comma, multiple commands can be sent on one line delimited with a semi-colon. Eg.

AMPLIT,1.5;OUTPUT,ON

Mandatory commands specified in the IEEE488.2 protocol have been implemented, (e.g. *IDN?, *RST) and all
commands that expect a reply are terminated with a question mark.

The instrument maintains an error status byte consistent with the requirements of the IEEE488.2 protocol (called the standard event status register) that can be read by the mandatory command *ESR? (see section 5.1).

The instrument also maintains a status byte consistent with the requirements of the IEEE488.2 protocol, that can be read either with the IEEE488 serial poll function or by the mandatory command *STB? over RS232 or IEEE or LAN (see section 5.2).

The IEEE address defaults to 23 and can be changed via the COMMS menu.

The keyboard is disabled when the instrument is set to “remote” using the IEEE. Press HOME to return to “local” operation.

RS232 data format is: start bit, 8 data bits (no parity), 1 stop bit. Flow control is RTS/CTS (see section 5.2), baud rate is selectable via the MONITOR menu.

A summary of the available commands is given in the Appendix. Details of each command are given in the communication command section of the manual.

Commands are executed in sequence except for two special characters that are immediately obeyed:
 - Control T (20) – reset interface (device clear)
 - Control U (21) – warm restart
1.1 Standard event status register

<table>
<thead>
<tr>
<th>PON</th>
<th>CME</th>
<th>EXE</th>
<th>DDE</th>
<th>QYE</th>
<th>OPC</th>
</tr>
</thead>
</table>

- **bit 0 OPC**: (operation complete)
 cleared by most commands
 set when data available or sweep complete
- **bit 2 QYE**: (unterminated query error)
 set if no message ready when data read
- **bit 3 DDE**: (device dependent error)
 set when the instrument has an error
- **bit 4 EXE**: (execution error)
 set when the command cannot be executed
- **bit 5 CME**: (command interpretation error)
 set when a command has not been recognised
- **bit 7 PON**: (power on event)
 set when power first applied or unit has reset

The bits in the standard event status register except for OPC are set by the relevant event and cleared by specific command (*ESR?, *CLS, *RST). OPC is also cleared by most commands that change any part of the configuration of the instrument (such as MODE or START).
1.2 Serial Poll status byte

<table>
<thead>
<tr>
<th></th>
<th>ESB</th>
<th>MAV</th>
<th>ALM</th>
<th>FDV</th>
<th>SDV</th>
<th>RDV</th>
</tr>
</thead>
</table>

bit 0 \(\text{RDV} \) (result data available)
set when results are available to be read as enabled by DAVER

bit 1 \(\text{SDV} \) (sweep data available)
set when sweep results are available to be read as enabled by DAVER

bit 2 \(\text{FDV} \) (fast data available (streaming))
set when data streaming results are available to be read as enabled by DAVER

bit 3 \(\text{ALA} \) (alarm active)
set when an alarm is active and enabled by ALARMER

bit 4 \(\text{MAV} \) (message available)
set when a message reply is waiting to be read

bit 5 \(\text{ESB} \) (standard event summary bit)
set if any bit in the standard event status register is set as well as the corresponding bit in the standard event status enable register (set by *ESE).
1.3 RS232 connections

The RS232 port on the instrument uses the same pinout as a standard 9 pin serial port on a PC or laptop (9-pin male ‘D’ type).

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>in (+ weak pull up)</td>
</tr>
<tr>
<td>2</td>
<td>RX data</td>
<td>in</td>
</tr>
<tr>
<td>3</td>
<td>TX data</td>
<td>out</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>out</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>not used</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>out</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>in</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>not used</td>
</tr>
</tbody>
</table>

The instrument will only transmit when CTS (pin 8) is asserted, and can only receive if DCD (pin 1) is asserted. The instrument constantly asserts (+12V) DTR (pin 4) so this pin can be connected to any unwanted modem control inputs to force operation without handshaking. The instrument has a weak pull up on pin 1 as many null modem cables leave it open circuit. In electrically noisy environments, this pin should be driven or connected to pin 4.

To connect the instrument to a PC, use a 9 pin female to 9 pin female null modem cable:

```
1 & 6 - 4
2 - 3
3 - 2
4 - 1 & 6
5 - 5
7 - 8
8 - 7
```
1.4 Data streaming

The phase angle voltmeter and power meter modes have the option of high speed data streaming. In this operation, the window width for the measurement may be specified from 660us to 100ms and the data for each measurement window is transmitted over the communications in a continuous stream. The window is adjusted to synchronise to the measured frequency.

The instrument buffers the data and transmits at the fastest rate that is possible. The buffer depth is over 8000 data values so more than 5 seconds of data can be captured at the fastest rate of 1500 readings per second even if the data is not read at all. If the window size is such that the data can be read out in real time then data streaming can continue indefinitely.

Once the data streaming window has been setup but before the streaming has been started, the display periodically shows the measured value. Once streaming has been started, the display is blanked to minimise processing overheads. Streaming can be stopped either immediately (ABORT) or may be stopped but remaining data continues to be transmitted until the buffer is empty (STOP).

STREAM,ENABLE,0.01
START
read data
STOP
continue to read stored data
2 Communication commands

*CLS

Function: Clear status
Description: Clears the *standard event status register*.
Format: *CLS
Arguments: none
Reply: none
Example: *CLS
 *ESR?
 0

Notes:
ESE

Function: Set standard event status enable register.

Description: Enable which bits of the *standard event status register* set the ESB bit in the serial poll status byte.

Format: *ESE, value

Arguments: decimal equivalent of bits in standard event status enable register

Reply: can be read by *ESE?*

Example: *ESE, 60

Notes: The following bits in the standard event status enable register have been implemented:

- bit 0 OPC (operation complete)
- bit 2 QYE (unterminated query error)
- bit 3 DDE (device dependent error)
- bit 4 EXE (execution error)
- bit 5 CME (command interpretation error)
- bit 7 PON (power on event)

For example, *ESE, 60 enables all the error bits so that the ESB bit in the serial poll status byte is set in the event of any error.
ESR?

Function: Standard event status register query

Description: Returns the contents of the *standard event status register* and clears it.

Format: *ESR?*

Arguments: none

Reply: decimal equivalent of bits in standard event status register

Example: *ESR?* 33

Notes: The following bits in the standard event status register have been implemented:

- bit 0 OPC (operation complete)
- bit 2 QYE (unterminated query error)
- bit 3 DDE (device dependent error)
- bit 4 EXE (execution error)
- bit 5 CME (command interpretation error)
- bit 7 PON (power on event)

For example, if a command is sent incorrectly and is not recognised, the CME bit will be set and the value of 33 will be returned.
Function: Identify query

Description: Returns a standard format identification string.

Format: *IDN?

Arguments: none

Reply: An ASCII string in the IEEE488.2 format: manufacturer,model,serial no,version

Example: *

Notes:
OPC?

Function: Test for operation complete

Description: Returns 1 if previous operation is completed, 0 if not.

Format: *OPC?

Arguments: none

Reply: 0 or 1

Example:
START
*OPC?
0
*OPC?
0
*OPC?
1

Notes: *OPC? can be used to indicate when data is available or when a frequency sweep has completed.
RST

Function: Reset

Description: Resets the instrument to the default state and clears the standard event status register.

Format: *RST

Arguments: none

Reply: none

Example: *RST

Notes: The *RST command loads the default configuration. This is the same as loading the default configuration via the PROGRAM menu.

Any preceding setup commands will be overwritten.

*RST should be followed by an end of line not a message separator. It may be helpful to follow it with a short pause to allow the new configuration to become active before sending further commands.
SRE

Function: Set service request enable register.

Description: Enable which bits of the *status byte register* initiate a service request.

Format: *SRE, value

Arguments: decimal equivalent of bits in status byte register

Reply: can be read by *SRE?*

Example: *SRE, 1
generate a service request when data available.

Notes:
Function: Read service request enable register.
Description: Read back the present setting of the service request enable register.
Format: *SRE?
Arguments:
Reply: decimal equivalent of bits in status byte register that would generate a service request.
Example: *SRE?
1
Notes:
Function: Read serial poll status byte

Description: Returns the decimal value of the serial poll status byte.

Format: *STB?*

Arguments: none

Reply: decimal value of the serial poll status byte

Example:
*STB? 1

Notes: The following bits in the serial poll status register have been implemented:

- bit 0 RDV (results data available)
- bit 1 SDV (sweep data available)
- bit 3 ALA (alarm active)
- bit 4 MAV (message available)
- bit 5 ESB (standard event summary bit)
Function: Trigger

Description: Initiates a new measurement, resets the ranging and filtering.

Format: *TRG

Arguments: none

Reply: none

Example: MODE,VRMS
*TRG
VRMS?

Notes:
*TST?

Function: Self test query
Description: Returns the results of self test
Format: *TST?
Arguments: none
Reply: single integer
 bit 0 – set if uncalibrated
 bit 1 – set if error with analogue zero
 > 15 – major system error

Example: *TST?
 0

Notes:
WAI

Function: Wait for operation complete
Description: Suspends communication until the previous operation has completed
Format: *WAI
Arguments: none
Reply: none
Example: GAINPH
START
*WAI
GAINPH,SWEEP?

Notes: In the example, the query command GAINPH,SWEEP? can be sent immediately after the *WAI command and the sweep data will be returned as soon as the sweep has completed.
ABORT

Function: Abort sweep
Description: Abort an active sweep, or data streaming.
Format: ABORT
Arguments: none
Reply: none
Example: MODE, PHASE, STREAM, 0.01
START
read data values as required
ABORT

Notes: Any remaining values held in the buffer will be discarded.
ACTRIM

Function: Set ac control parameters

Description: Sets the specified signal level, tolerance and input channel for the ac control (amplitude compression).

Format: ACTRIM,channel,level,tolerance

Arguments: channel:
- DISABL
- CH1
- CH2

level:
required ac level in V or A or dBm

tolerance:
required accuracy in percent

Reply: none

Example: ACTRIM,CH1,1.0,5 (1.0V, 5%)

Notes: The level should be set in dBm if dBm mode is selected (OUTPUT,DBM)

It is not necessary to send all the arguments but those that are sent must be in the correct sequence.
ALARM

Function: Set common controls for alarm1 and alarm2.

Description: Set the alarm latch and sounder control.

Format: `ALARM,latch,sounder`

Arguments: latch:
- ON
- OFF

sounder:
- ENABLED
- DISABLED

Reply: none

Example: `ALARM,ON,DISABLED`

Notes:
<table>
<thead>
<tr>
<th>ALARM?</th>
<th>ALARM?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function:</td>
<td>Read alarm status.</td>
</tr>
<tr>
<td>Description:</td>
<td>Reads the status of the measurements and 2 alarms.</td>
</tr>
<tr>
<td>Format:</td>
<td>ALARM?</td>
</tr>
<tr>
<td>Arguments:</td>
<td>none</td>
</tr>
<tr>
<td>Reply:</td>
<td>single integer</td>
</tr>
<tr>
<td></td>
<td>bit 0 data available</td>
</tr>
<tr>
<td></td>
<td>bit 1 data error</td>
</tr>
<tr>
<td></td>
<td>bit 2 alarm 1</td>
</tr>
<tr>
<td></td>
<td>bit 3 alarm 2</td>
</tr>
<tr>
<td>Example:</td>
<td>ALARM?</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Notes:</td>
<td>An alarm is present if bit 0 is high (data is available) and either alarm 1 or alarm 2 bits are high.</td>
</tr>
</tbody>
</table>
ALARM1

Function: Set parameters for alarm1.
Description: Set alarm1 type and thresholds.
Format: ALARM1,type,data,high,low
Arguments: type:
 DISABLED
 HIGH
 LOW
 INSIDE
 OUTSIDE
 LINEAR
data 1-4
high:
 high threshold
low:
 low threshold
Reply: none
Example: ALARM1,HIGH,1,2,0
Notes: Both thresholds must be sent even if only one is used.
ALARM2

Function: Set parameters for alarm2.

Description: Set alarm2 type and thresholds.

Format: ALARM2,type,data,high,low

Arguments: type:
 DISABLED
 HIGH
 LOW
 INSIDE
 OUTSIDE

data
 1-4 for zoom data

high:
 high threshold

low:
 low threshold

Reply: None

Example: ALARM2,LOW,3,0,0.5

Notes: Both thresholds must be sent even if only one is used.
 There is no LINEAR option for alarm 2.
ALARME

Function: Set alarm status enable register

Description: Sets bits in the alarm status enable register to control which alarm bit if any set the alarm active bits in the status byte.

Format: ALARME, value

Arguments: decimal equivalent of alarm bits
- bit2: set bit 3 of status byte when alarm 1 is active
- bit3: set bit 3 of status byte when alarm 2 is active

Reply: none

Example:
- ALARME, 12
- *SRE,8
 set bit 3 in status byte when either alarm 1 or alarm 2 is active and generate a service request

Notes: default value is 0
<table>
<thead>
<tr>
<th>Function:</th>
<th>Read alarm status enable register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Read back present bits in the alarm status enable register which controls the alarm active bit in the status byte.</td>
</tr>
<tr>
<td>Format:</td>
<td>ALARME?</td>
</tr>
<tr>
<td>Arguments:</td>
<td>none</td>
</tr>
<tr>
<td>Reply:</td>
<td>decimal equivalent of alarm bits</td>
</tr>
<tr>
<td>Example:</td>
<td>ALARME?</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
</tbody>
</table>
AMPLIT

Function: Set output amplitude
Description: Sets the output amplitude in Volts or dBm for the generator.
Format: AMPLIT,amplitude
Arguments: peak amplitude in Volts or amplitude in dBm
Reply: none
Example: AMPLIT,0.5 (set peak amplitude to 0.5V)
Notes: dBm mode is selected by OUTPUT,DBM
ANALOG

Function: Set up analogue output
Description: Sets the scaling of the analogue output or a constant value.
Format: ANALOG,MONITOR,zero,scale
 ANALOG,MANUAL,value
Arguments: zero level for monitored value
 full scale for monitored value
 value between 0 and 1 for manual
Reply: none
Example: ANALOG,MONITOR,
Notes: Analog output given by:
 fraction = (value – zero) / full scale
Function: Select bandwidth or selective (heterodyning) measurements.

Description: Selective measurement automatically starts at around 10kHz for those functions that support it. It can be disabled by forcing the bandwidth to “wide”. For low noise measurements at low frequency the bandwidth can be restricted to “low”.

Format: BANDWI,type

Arguments: type:
 AUTO
 WIDE
 LOW

Reply: none

Example: BANDWI,WIDE

Notes: In wide bandwidth mode the frequency range is limited to 1MHz. In low bandwidth mode, the frequency is restricted to 30kHz.
BEEP

Function: Sound the buzzer
Description: Makes a “beep” from the instrument.
Format: BEEP
Arguments: none
Reply: none
Example: BEEP
Notes:
BLANKI

Function: Select blanking

Description: Enable or disable low value blanking.

Format: \texttt{BLANKI,value,threshold}

Arguments:
\begin{itemize}
 \item \textbf{value}:
 \begin{itemize}
 \item ON
 \item OFF
 \end{itemize}
 \item \textbf{threshold}:
 \begin{itemize}
 \item threshold in appropriate units
 \end{itemize}
\end{itemize}

Reply: none

Example:
\begin{itemize}
 \item BLANKI,OFF
 \item BLANKI,ON,-35
\end{itemize}

Notes: It is not necessary to send the threshold. Not all functions have a threshold option, it will only be used if in an appropriate mode.
FUNCTION: Direct access of configuration parameters

DESCRIPTION: Sets configuration parameter for which there may not be a direct command.

FORMAT: CONFIG,index,data

ARGUMENTS: index is the number of the parameter
data is the data for that parameter

REPLY: none

EXAMPLE: CONFIG,6,1 (set phase convention)

NOTES: The list of configurable parameters is given in the appendix.
CONFIG goes through the same limit checking as when entering data from the menus.
CONFIG?

Function:	Configurable parameter query
Description:	Reads the present value of a single parameter.
Format:	CONFIG,\textit{index}?
or:	CONFIG?\textit{index}
Arguments:	\textit{index} is the parameter number
Reply:	Value of parameter, real or integer as appropriate.
Example:	CONFIG,6? (read phase convention)
	0
	CONFIG,6,1
	CONFIG,6?
	1
Notes:	The list of configurable parameters is given in the appendix.
COUPLI

Function: Set ac or dc coupling.

Description: Selects the input coupling for a given input channel.

Format: `COUPLI,channel,coupling`

Arguments:
- channel:
 - CH1
 - CH2
- coupling:
 - AC+DC
 - ACONLY

Reply: none

Example: `COUPLI,CH2,AC+DC`

Notes:
CYCLES

Function: Set the minimum number of cycles for a measurement.

Description: The measurement window is normally set according to a time value but subject to a whole cycle of the frequency. Setting a minimum number of cycles to a value greater than 1 extends the measurement window at frequencies where the periodic time is longer than the set window time.

Format: CYCLES,cycles

Arguments: minimum number of cycles

Reply: none

Example: CYCLES,4

Notes:
Function: Set up datalog

Description: Sets datalog parameters or accesses datalog non-volatile store.

Format: DATALO, function, interval

Arguments:

- function:
 - DISABLE
 - RAM
 - NONVOL
 - RECALL
 - DELETE

- interval:
 - datalog interval in seconds

Reply: none

Example: DATALOG, NONVOL, 10

Notes:
DATALO?

Function: Read back datalog results

Description: Return datalog values, one record per line

Format: `DATALO,start,records`

Arguments:
- `start`: first record to return
- `records`: number of records to return

Reply: 3 to 6 data values depending on settings:
- index 1-n
- elapsed time in hours
- `data1`
- `data2` (if stored)
- `data3` (if stored)
- `data4` (if stored)

one record per line

Example:
```
DATALOG,NONVOL,36
START
wait for datalog
STOP
DATALOG,20,4?
20,1.9000E-1,1.2345E0
21,2.0000E-1,1.2345E0
22,2.1000E-1,5.6789E3
23,2.2000E-1,1.2345E0
```

Notes: if no arguments are sent then `DATALOG?` returns all data in the same format
DAV?

Function: Data available query
Description: Returns data availability status.
Format: DAV?
Arguments: none
Reply: Decimal equivalent of data available bits:
 bit0 new data available
 bit1 data available
 bit2 new full sweep data available
 bit3 sweep data available
 bit4 streaming data available
 bit5 more streaming data to come
 bit6 integration data available
 bit7 datalog data available

Example: START (trigger sweep)
 DAV? 0
 DAV? 11 (first data available)
 DAV? 11
 DAV? 11
 DAV? 15 (full sweep data available)

Notes: DAV? does not modify the status bits.
DAVER

Function: Set data available enable register

Description: Sets bits in the data available enable register to control which status bits set the data available bits in the status byte.

Format: DAVER,value

Arguments: decimal equivalent of data available bits
 - bit0 set bit 0 of status byte when new data available
 - bit1 set bit 0 of status byte when data available
 - bit2 set bit 1 of status byte when new full sweep data available
 - bit3 set bit 1 of status byte when sweep data available
 - bit4 set bit 2 of status byte when streaming data available
 - bit5 set bit 2 of status byte if more streaming data is to come

Reply: none

Example: DAVER, 4
set bit 1 in status byte only when full sweep data is ready

Notes: default value is 6:
bit 0 of status byte is set whenever data is available
bit 1 of status byte is set when full sweep data is available.
DAVER?

<table>
<thead>
<tr>
<th>Function:</th>
<th>Read data available enable register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Read back present setting of the data available enable register, which controls the status bits that set the data available bits in the status byte.</td>
</tr>
<tr>
<td>Format:</td>
<td>DAVER?</td>
</tr>
<tr>
<td>Arguments:</td>
<td>none</td>
</tr>
<tr>
<td>Reply:</td>
<td>decimal equivalent of bits</td>
</tr>
<tr>
<td>Example:</td>
<td>DAVER? 4</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
</tbody>
</table>
DELAY

Function: Set a delay time between frequency points

Description: Applies a settling time when changing frequency for systems which need some settling time after the frequency changes before a measurement should be made.

Format: DELAY, time

Arguments: delay time in seconds

Reply: none

Example: DELAY, 1

Notes:
FILTER

Function: Select the filtering
Description: Sets the filter time constant and dynamic response.
Format: FILTER,type,dynamics
Arguments: type:
NONE
NORMAL
SLOW
dynamics:
AUTO
FIXED
Reply: none
Example: FILTER,NORMAL,FIXED
FILTER,NONE
Notes: It is not necessary to send both parameters if it is only required to set the type. Both arguments must be sent to set the dynamics.
Function: Set frequency response analyser mode.
Description: Set frequency response analyser mode.
Format: FRA
Arguments:
Reply: none
Example: FRA
Notes: This command has the same effect as MODE,GAINPH. FRA, GAINPH, TFA are aliases for the same command.
FRA?

Function: frequency response analyser query

Description: Read frequency response analyser results. Sets frequency response analyser mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format:
- FRA?
- or: FRA?SWEEP
- or: FRA,SWEEP?

Arguments: none, or SWEEP

Reply: 6 data values separated by commas
- freq,mag1,mag2,db,phase, delay
- one line per result for sweep data

Example:
```
OUTPUT,ON
FRA
FSWEEP,20,10,20E3
START
DAV?
3
DAV?
15
FRA?SWEEP
```
data returned

Notes:
- FRA? waits for next unread data.
- FRA?SWEEP does not wait for new data – data can be read multiple times.
- FRA, GAINPH, TFA are aliases for the same command
Function: Set the output frequency
Description: Sets the generator output frequency in Hz.
Format: FREQUE,frequency
Arguments: frequency in Hz
Reply: none
Example: FREQUE,5e4 (set frequency to 50kHz)
Notes:
FSWEEP

Function: Set the frequency sweep parameters

Description: Sets the start frequency in Hz, the end frequency, the number of steps and log/linear for the selected function.

Format: FSWEEP,steps,start,end,type

Arguments:

steps: number of steps
start: start frequency in Hz
end: end frequency in Hz
type: LOGARI LINEAR

Reply: none

Example: MODE,GAINPH
FSWEEP,50,1000,1e6
(set 50 steps between 1kHz and 1MHz)

Notes: It is not necessary to send all the arguments, but if they must be in the specified order. The action at the end of the sweep is specified in the OUTPUT command.
GAINPH

Function: Set gain/phase analyser mode.

Description: Set gain/phase analyser mode.

Format: GAINPH

Arguments:

Reply: none

Example: GAINPH

Notes: This command has the same effect as MODE,GAINPH.
FRA, GAINPH, TFA are aliases for the same command.
GAINPH?

Function: Gain/phase query

Description: Read gain/phase analyser results. Sets gain/phase analyser mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format:

GAINPH?

or:

GAINPH?SWEEP

or:

GAINPH,SWEEP?

Arguments: none, or SWEEP

Reply: 6 data values separated by commas

freq,mag1,mag2,db,phase,delay

one line per result for sweep data

Example:

OUTPUT,ON
GAINPH
FSWEEP,20,10,20E3
START
DAV?
3
DAV?
15
GAINPH?SWEEP
data returned

Notes: GAINPH? waits for next unread data. GAINPH?SWEEP does not wait for new data – data can be read multiple times.
HARMON

Function: Set harmonic analyser mode.

Description: Set harmonic analyser mode and parameters.

Format: HARMON, scan, parameter, harmonic, max

Arguments: scan:
- SINGLE
- THDD
- THDS

parameter:
- PERCEN
- DB

harmonic:
- single harmonic 2-50 for display

max:
- harmonic series 2-50 for series thd

Reply: none

Example: HARMON, SINGLE, PERCEN, 3

Notes: It is not necessary to send any arguments, but if any are sent they must be in the specified order.
HARMON?

Function: Harmonic analyser query

Description: Read harmonic results. Sets harmonic analyser mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format: HARMON?
or: HARMON,SWEEP?
or: HARMON,SERIES?

Arguments: none, or SWEEP, or SERIES

Reply: 7 data values separated by commas:
 single: freq,mag1,mag2,h1,h2,harm1,harm2
 thd: freq,mag1,mag2,thd1,thd2,harm1,harm2
 1 line per result for sweep data
 series: 6 data values separated by commas:
 mag1,%1,phase1,mag2,%2,phase2

Example: HARMON?
data returned

Notes: HARMON? waits for next unread data. HARMON?SWEEP does not wait for new data – data can be read multiple times.
HOLD

Function: Set/clear HOLD mode

Description: HOLD mode stops the instrument from updating the measured values

Format: HOLD,value

Arguments: value:
 ON
 OFF

Reply: none

Example: HOLD,ON

Notes:
<table>
<thead>
<tr>
<th>Function:</th>
<th>Set input mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Selects the input type of the instrument</td>
</tr>
<tr>
<td>Format:</td>
<td>INPUT,\textit{channel},\textit{type}</td>
</tr>
<tr>
<td>Arguments:</td>
<td>channel:</td>
</tr>
<tr>
<td></td>
<td>\textit{CH1}</td>
</tr>
<tr>
<td></td>
<td>\textit{CH2}</td>
</tr>
<tr>
<td>type:</td>
<td>DISABLE</td>
</tr>
<tr>
<td></td>
<td>VOLTAGE</td>
</tr>
<tr>
<td></td>
<td>SHUNT</td>
</tr>
<tr>
<td>Reply:</td>
<td>none</td>
</tr>
<tr>
<td>Example:</td>
<td>INPUT,CH1,SHUNT</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
</tbody>
</table>
INTYPE

PSM1735 NumetriQ only

Function: Set input connection

Description: Selects the input type for each channel to be non-inverting, inverting, or differential.

Format: `INPUT,channel,type`

Arguments:

channel:
- CH1
- CH2

type:
- MAIN
- SECOND
- DIFFER

Reply: none

Example: `INPUT,CH1,DIFFERENTIAL`

Notes:
Function: Disable front panel keyboard.
Description: The front panel keyboard can be disabled to prevent accidental operation.
Format: KEYBOARD,value
Arguments: value:
 ENABLE
 DISABLE
Reply: none
Example: KEYBOARD,DISABLE
Notes: The keyboard can be re-enabled from the front panel only by pressing the HOME key.
LCR

Function: Set LCR meter mode.

Description: Set LCR mode and conditions.

Format: LCR,conditions,parameter,head

Arguments:
- conditions: AUTO, MANUAL
- parameter: AUTO, CAPACITANCE, INDUCTANCE, IMPEDANCE, ADMITTANCE
- head: NONE, LOW (only valid for IAI), NORMAL, HIGH, VHIGH

Reply: none

Example: LCR,AUTO,IMPEDA,NORMAL

Notes: It is not necessary to send any arguments, but if any are sent they must be in the specified order.
LCR?

Function: LCR meter query

Description: Read LCR meter results. Sets LCR meter mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format:
- LCR?
- LCR?SWEEP
- LCR,SWEEP?

Arguments: none, or SWEEP

Reply:
- 14 data values separated by commas:
 - freq, mag1, mag2, impedance,
 - phase, series R, series L, series C,
 - //R, //L, //C, tanδ, Q, reactance
- 11 data values separated by commas:
 - freq, mag1, mag2, impedance,
 - phase, resistance, reactance,
 - admittance, phase, conductance,
 - susceptance

sweep reply:
- 8 data values per line per sweep result:
 - freq, Q, tanδ, impedance, phase, L, C, R

Example:
- OUTPUT,ON
- LCR?
- data returned

Notes: LCR? waits for next unread data. LCR?SWEEP does not wait for new data – data can be read multiple times.
LOWFRE

Function: Set low frequency mode
Description: Sets the low frequency option for external frequency measurement.
Format: LOWFRE,value
Arguments: value:
ON
OFF
Reply: none
Example: LOWFRE,ON
Notes: LOWFRE is mainly used for measuring low frequencies when not using the instrument generator for the frequency reference. However, as it applies digital filtering, it may also be useful when analysing any signals below a few hundred Hertz.
MARKER

Function: Set frequency marker
Description: Enable or disable frequency marker.
Format: MARKER,value,frequency
Arguments: value:
 ON
 OFF
frequency: marker frequency in Hz
Reply: none
Example: MARKER,OFF
 MARKER,ON,25e3
Notes: It is not necessary to send the frequency when enabling the marker if it has already been set.
MODE

Function: Set mode
Description: Sets the fundamental operating mode of the instrument.
Format: MODE,type
Arguments: type:
 SIGGEN (signal generator only)
 VRMS (rms voltmeter)
 GAINPH (gain/phase analyser)
 VECTOR (vector voltmeter)
 POWER (power meter)
 LCR (LCR meter)
 HARMON (harmonic analyser)
 TXA (transformer analyser)
Reply: none
Example: MODE,GAINPH
Notes: MODE sets the measurement mode of the instrument
OFFSET

Function: Set the output offset

Description: Sets the output generator offset in Volts.

Format: OFFSET,offset

Arguments: offset in Volts

Reply: none

Example: OFFSET,5e-3 (set offset to 5mV)

Notes:
OUTPUT

Function: Set output
Description: Turns the output on or off, or sets the level mode to dBm or voltage. Also specifies the action at the end of a sweep
Format: OUTPUT, command, sweep, phase
Arguments: command:
 OFF
 ON
 VOLT
 DBM
 DCONLY (PsimetriQ only)
 PHRESE (PsimetriQ only)
sweep:
 OFF
 ON
 DCONLY
 PHRESE (PsimetriQ only)
phase:
 phase to switch off (PsimetriQ only)
Reply: none
Example: OUTPUT, ON
Notes: For safety, the output defaults to off and must be turned on explicitly. It is not necessary to send all the arguments, but if they are sent they must be in the specified order
PAV

Function: Set phase angle voltmeter mode.

Description: Set phase angle voltmeter mode and parameter.

Format: `PAV, parameter, lvdt scale`

Arguments:
- `parameter`:
 - INPHAS
 - QUADR
 - TANPHI
 - MAGNIT
 - POLAR
 - A2/1
 - RMS2
 - RMS2/1
 - LVDT-D
 - LVDT-R
- `lvdt scale`:
 - scale factor in m for lvdt applications

Reply: none

Example: `PAV, LVDT-D, 0.1`

Notes: It is not necessary to send any arguments, but those that are sent must be in the specified order. `PAV` and `VECTOR` are aliases for the same command.
PAV?

Function: Phase angle voltmeter query

Description: Read phase angle voltmeter results. Sets phase angle voltmeter mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format:
- PAV?
- PAV?SWEEP
- PAV,SWEEP?

Arguments: none, or SWEEP

Reply: 7 data values separated by commas:
- freq, mag1, mag2, parameter, phase, a, b
- 1 line per result for sweep data

Example:
- FREQ,3300
- OUTPUT,ON
- PAV?LVDT_D,0.1
- data returned

Notes: PAV? waits for next unread data. PAV?SWEEP does not wait for new data – data can be read multiple times. PAV and VECTOR are aliases for the same command.
PHASE

Function: Set phase meter mode.

Description: Select phase meter mode.

Format: `PHASE, mode, window size`

Arguments:
- `mode`: NORMAL, STREAM
- `window size`: streaming window size in seconds

Reply: none

Example: PHASE

Notes: It is not necessary to send any arguments but if they are sent they must be in the specified order.
PHASE?

Function: Phase meter query

Description: Reads phase meter results. Sets phase meter mode if not already set. Waits for next unread data if available. Clears new data available bit read by DAV?

Format: PHASE?

Arguments: none

Reply: 2 data values separated by commas freq,phase

Example: PHASE?
1.8396E2,5.0342E-2,

Notes: The phase convention can be set to 0° to -360°, 0° to +360°, or +180° to -180° in the SYSTEM menu or using CONFIG,6,0-2 (see appendix) .
PHCONV

Function: Set phase convention
Description: Set phase convention
Format: PHCONV, convention
Arguments: convention:
 180: -180 to +180
 -360: 0 to -360
 +360: 0 to +360
Reply: none
Example: PHCONV, -360
Notes:
Function: Set phase reference
Description: Select measurement of phase as CH2 relative to CH1 or as CH1 relative to CH2
Format: PHREF, channel
Arguments: channel:
 CH1: phase = ch2 wrt ch1
 CH2: phase = ch1 wrt ch2
Reply: none
Example: PHREF, CH2
Notes: This parameter influences the phase meter mode and the phase angle voltmeter mode
POWER

Function: Set up power meter mode.
Description: Configure power meter with integration type
Format: POWER, integration type
Arguments: integration type:
 MAGNITUDE
 SIGNED
Reply: none
Examples: POWER, SIGNED
 POWER
Notes: It is not necessary to send the integration type argument.
Function: Read power meter results

Description: Reads back latest power meter results. Sets power meter mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format: POWER?
or: POWER?results
or: POWER,results?

Arguments: results:
- WATTS
- RMS
- INTEGR

Reply: WATTS:
- 9 data values separated by commas
 W,W.f,VA,VA.f,pf,pf.f,Wdc,W.h,freq
RMS:
- 8 data values separated by commas
 rms1,2,dc1,2,f1,2,phase1,2
INTEGR:
- 9 data values separated by commas
 Wh,Wh.f,VAh,VAh.f,avpf,avpf.f,
 Ah,Ah.f,time
no argument:
- 26 data values separated by commas
 WATTS, RMS, INTEGR

Example: POWER?WATTS

Notes:
PPORT

Function: Set the parallel port
Description: Force the logic level on the parallel port data lines
Format: PPORT, value
Arguments: decimal value to be written to the port
Reply: None
Example: PPORT,64 {set data bit 6, clear others}
Notes: The parallel port may be used as an 8 bit logic level output port and a 4 bit logic level input port.
<table>
<thead>
<tr>
<th>PPORT?</th>
<th>PPORT?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function:</td>
<td>Read the parallel port</td>
</tr>
<tr>
<td>Description:</td>
<td>Read the logic level on the parallel port control input lines</td>
</tr>
<tr>
<td>Format:</td>
<td>PPORT?</td>
</tr>
<tr>
<td>Arguments:</td>
<td>None</td>
</tr>
<tr>
<td>Reply:</td>
<td>Single integer data value</td>
</tr>
<tr>
<td>Example:</td>
<td>PPORT?</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Notes:</td>
<td>The parallel port may be used as a 4 bit logic level input port and an 8 bit logic level output port.</td>
</tr>
</tbody>
</table>
Function: Access non volatile program stores.
Description: Recall, store or delete non-volatile program store.
Format: \texttt{PROGRA, }function, number
Arguments: function:
 \begin{itemize}
 \item RECALL
 \item STORE
 \item DELETE
 \end{itemize}
number
 \begin{itemize}
 \item 0-100
 \end{itemize}
Reply: none
Example: \texttt{PROGRA,RECALL,13}
Notes: Number 0 represents factory default, which can only be recalled.
<table>
<thead>
<tr>
<th>PROGRA?</th>
<th>PROGRA?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function:</td>
<td>Identify current program.</td>
</tr>
<tr>
<td>Description:</td>
<td>Reads the name of the last program to be loaded or recalled.</td>
</tr>
<tr>
<td>Format:</td>
<td>PROGRA?</td>
</tr>
<tr>
<td>Arguments:</td>
<td>none</td>
</tr>
<tr>
<td>Reply:</td>
<td>text string</td>
</tr>
<tr>
<td>Example:</td>
<td>PROGRA?</td>
</tr>
<tr>
<td></td>
<td>factory default</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
</tbody>
</table>
RANGE

Function: Set channel ranging.

Description: Select minimum range and range control for a given input channel.

Format: RANGE,channel,ranging,range

Arguments: channel:
- CH1
- CH2
ranging:
- AUTO
- UPAUTO
- MANUAL
range:
- nominal range value

Reply: none

Example: RANGE,CH2,MANUAL,3V

Notes:
RESOLU

Function: Set the data resolution

Description: Data is returned in scientific format with exponent and mantissa. The resolution of the mantissa may be selected to be 5 digit (NORMAL) or 6 digit (HIGH).

Format: RESOLU, format

Arguments: format:
- NORMAL (5 digit mantissa)
- HIGH (6 digit mantissa)
- BINARY (raw binary format)

Reply: none

Example: RESOLU, HIGH

Notes: The resolution only changes the real number replies.
- Data format for NORMAL is:
 [-]1.2345E[-]00
- Data format for HIGH is:
 [-]1.23456E[-]00

The signs of the mantissa and exponent, shown as [-] in the above examples, are only sent if they are negative.

Data format for BINARY is a proprietary floating point format which returns raw data in a minimum number of data bytes.
REZERO

Function: Rezero front end

Description: Request the DSP to re-compensate for dc offset and compute a new autozero

Format: REZERO

Arguments: none

Reply: none

Example: REZERO

Notes:
Function: Returns status of various internal processes
Description: Returns status of various internal processes
Format: RUN?
Arguments: none
Reply: Bit 0: Sweep running
 Bit 1: Fast sweep running
 Bit 2: Integrator running
 Bit 3: Datalog running
 Bit 4: Fast datalog running
 Bit 5: Fast analog output running
 Bit 6: Not used
 Bit 7: Generator active

Example: RUN?
 9

Notes:
Function: Set channel scale factor.
Description: Set a multiplying scale factor for a given input channel.
Format: SCALE,channel,factor
Arguments: channel:
 CH1
 CH2
factor:
 multiplying scale factor
Reply: none
Example: SCALE,CH2,10
Notes:
SHUNT

Function: Set channel shunt value

Description: Set the resistance factor of a current shunt to be divided into the measured voltage for a given input channel.

Format: \texttt{SHUNT,channel,resistance}

Arguments:
- \texttt{channel: CH1 CH2}
- \texttt{resistance: shunt resistance in Ohms}

Reply: none

Example: \texttt{SHUNT,CH1,10}

Notes: The SHUNT command is still accepted if the channel has not been configured for current. The value stored will be used when the channel is configured for current.
SINGLE

Function: Set single measurement mode

Description: Selects the measurement mode to be single measurements instead of normal continuous measurements.

Format: SINGLE, *value*

Arguments:
- value: ON
- OFF

Reply: none

Example:
- SINGLE, ON
- SPEED, WINDOW, 0.8
- OUTPUT, ON, OFF
- *TRG; FRA?
- data returned
- *TRG; FRA?
- data returned

Notes: Single measurement mode allows the output to be turned on for only one measurement then turned off again.
SPEED

Function: Sets the measurement speed
Description: Sets the minimum window size for the measurement.
Format: SPEED,value
 SPEED,WINDOW,time
Arguments: value:
 FAST
 MEDIUM
 SLOW
 VSLOW
 WINDOW
Reply: none
Example: SPEED,SLOW
 SPEED,WINDOW,0.1
Notes:
SSWEEP

Function: Access non volatile sweep results stores.

Description: Recall, store or delete non-volatile sweep results store.

Format: `SSWEEP, function, number`

Arguments:
- **function:**
 - `RECALL`
 - `STORE`
 - `DELETE`
- **number:** 1-30

Reply: none

Example: `SSWEEP,RECALL,13`

Notes: The sweep data can be read back using the sweep query command for each mode eg. FRA,SWEEP? for an FRA sweep.
START

Function: Start sweep
Description: Initiate sweep in those functions that have a sweep or resets filtering in others.
Format: START
Arguments: none
Reply: none
Example: MODE,GAINPH (set gain phase analyser) START
Notes:
STATUS?

Function: Read back channel ranging status.

Description: Read back condition of selected channel:
- range number (1-16)
- range text
- overflow/underflow status

Format: STATUS, channel?

or: STATUS? channel

Arguments: channel:
- CH1
- CH2

Reply: range number, range text, over/under/ok
- 1-16
- range as per RANGE command
- OVER if overflow
- LOW if underflow
- OK if in range

Example: STATUS, CH1?
- 6, 3V, OK

Notes:
STOP

Function: Stop sweep
Description: Stop an active sweep, or data streaming.
Format: STOP
Arguments: none
Reply: none
Example: MODE, PHASE, STREAM, 0.01
START
read data values as required
STOP
read remaining data values

Notes:
STREAM

Function: Set data streaming mode
Description: Set instrument ready for data streaming with specified window
Format: STREAM,control,window
Arguments: control
 ENABLE
 DISABL
window size
 streaming window size in seconds
Reply: none
Example: PAV,TANPHI
STREAM,ENABLE,0.01
START
read data values as required
STOP
read remaining data values
Notes: Data streaming is valid for phase meter and phase angle voltmeter (vector voltmeter) modes.
STREAM?

Function: Start to read streaming data

Description: Start to read streaming data

Format: STREAM?
 STREAM,max?
 STREAM?max

Arguments: max
 maximum number of values
 none
 return all data

Reply: data stream separated by commas

Example: PAV,TANPHI
 STREAM,ENABLE,0.01
 START
 STREAM?
 data,data,data,data, ……

Notes: This command is only used with IEEE488 (GPIB) - streaming starts immediately with RS232.
SUSPEND

<table>
<thead>
<tr>
<th>Function:</th>
<th>Suspend data acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Suspends the background data acquisition to maximise the communications speed.</td>
</tr>
<tr>
<td>Format:</td>
<td>SUSPEND, command</td>
</tr>
</tbody>
</table>
| Arguments: | command
 | OFF
 | ON |
| Reply: | none |
| Example: | DATALOG,NONVOL,36
 | START
 | wait for datalog
 | STOP
 | SUSPEND, ON
 | DATALOG?
 | data, data, data, data, ...
 | SUSPEND, OFF |

Notes:
<table>
<thead>
<tr>
<th>Function:</th>
<th>Set transfer function analyser mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Set transfer function analyser mode.</td>
</tr>
<tr>
<td>Format:</td>
<td>TFA</td>
</tr>
<tr>
<td>Arguments:</td>
<td></td>
</tr>
<tr>
<td>Reply:</td>
<td>none</td>
</tr>
<tr>
<td>Example:</td>
<td>TFA</td>
</tr>
<tr>
<td>Notes:</td>
<td>This command has the same effect as MODE,GAINPH. FRA, GAINPH, TFA are aliases for the same command.</td>
</tr>
</tbody>
</table>
TFA?

Function: transfer function analyser query

Description: Read transfer function analyser results. Sets transfer function analyser mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format: TFA?
or: TFA?SWEEP
or: TFA,SWEEP?

Arguments: none, or SWEEP

Reply: 6 data values separated by commas
freq,mag1,mag2,db,phase,delay
one line per result for sweep data

Example: OUTPUT,ON
TFA
FSWEEP,20,10,20E3
START
DAV?
3
DAV?
15
TFA?SWEEP
data returned

Notes: TFA? waits for next unread data. TFA?SWEEP does not wait for new data – data can be read multiple times. FRA, GAINPH, TFA are aliases for the same command
TXA

Function: Set transformer analyser mode.
Description: Set transformer analyser mode, test, fixture, and resistances
Format: TXA,test,fixture,source,load
Arguments: test:
 TXTR
 TXL
 TXLL
 TXACR
 TXDCR
 TXIWC
 TXMAGI
 TXRLOS
 TXILOS
 TXHARM
 TXTHD
 TXLBAL
fixture:
 NONE
 TAF01
 TAF02
source resistance
load resistance
Reply: none
Example: TXA,TXILOS,TAF01,135,25.4
Notes: It is not necessary to send any arguments, but they must be in the specified order.
TXA?

Function: Transformer analyser query

Description: Read transformer analyser results. Sets transformer analyser mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format: TXA?
or: TXA?SWEEP
or: TXA,SWEEP?

Arguments: none, or SWEEP

Reply: 3 or 4 data values separated by commas:

- freq,mag1,mag2,parameter
- txdcr dc1,dc2,resistance
- txmagi freq,rms1,rms2,watts

sweep reply: Data as above, one line per sweep result.

Example: TXA?
data returned

Notes: TXA? waits for next unread data. TXA?SWEEP does not wait for new data – data can be read multiple times.
TXTEST

Function: Set transformer analyser test.

Description: Set transformer analyser test and winding(s).

Format: TXTEST, *test*, *winding1*, *winding2*

Arguments:
- **test:** *as TXA command*
- **winding1:**
 - W1
 - W2
 - W3
 - W4 (TAF02 only)
 - W2+3 (TAF01 only)
- **winding2:** (turns ratio test only)
 - W1:W2
 - W2:W1
 - W1:W3
 - W3:W1
 - W2:W3
 - W3:W2
 - W1:W4 (TAF02 only)
 - W4:W1 (TAF02 only)
 - W1:2+3 (TAF01 only)
 - W2+3:1 (TAF01 only)

Reply: none

Example: TXTEST, TXTR, W1, W2:W3

Notes: It is not necessary to send all the arguments, but they must be in the specified order.
USER?

Function: Read the user data

Description: Returns up to 3 lines of user data

Format: USER?

Arguments: none

Reply: 3 lines of ASCII terminated by CR

Example: USER?
 Newtons4th Ltd
 R&D department
 PsimetriQ #4

Notes:
VECTOR

Function: Set vector voltmeter mode.

Description: Set vector voltmeter mode and parameter.

Format: \(\text{VECTOR,parameter,lvdt scale} \)

Arguments:
- parameter:
 - NONE
 - INPHAS
 - QUADR
 - TANPHI
 - POLAR
 - A2/A1
 - RMS2/1
 - LVDT-D
 - LVDT-R
- lvdt scale:
 - scale factor in m for lvdt applications

Reply: none

Example: VECTOR,LVDT-D,0.1

Notes: It is not necessary to send any arguments, but those that are sent must be in the specified order. PAV and VECTOR are aliases for the same command.
VECTOR?

Function: Vector voltmeter query

Description: Read vector voltmeter results. Sets vector voltmeter mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format:

VECTOR?

or:

VECTOR?SWEEP

or:

VECTOR,SWEEP?

Arguments: none, or SWEEP

Reply: 7 data values separated by commas:

freq,mag1,mag2,parameter,phase,a,b

1 line per result for sweep data

Example:

FREQ,3300
OUTPUT,ON
VECTOR?LVDT_D,0.1
data returned

Notes: VECTOR? waits for next unread data. VECTOR?SWEEP does not wait for new data – data can be read multiple times. PAV and VECTOR are aliases for the same command.
VERSIO?

Function: Read the instrument code versions.

Description: Returns an ASCII string with the details of the various parts of the instrument firmware.

Format: VERSIO?

Arguments: none

Reply: date code, type, cpu, dsp, fpga, boot

Examples: VERSION?
PQ3504,1,1.21,1.21,1.21,1.02

Notes: This data can be displayed on the screen by pressing SYSTEM then BACK
<table>
<thead>
<tr>
<th>Function</th>
<th>Set up rms voltmeter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Set mode to rms voltmeter.</td>
</tr>
<tr>
<td>Format</td>
<td>VRMS</td>
</tr>
<tr>
<td>Arguments</td>
<td>none</td>
</tr>
<tr>
<td>Reply</td>
<td>none</td>
</tr>
<tr>
<td>Examples</td>
<td>VRMS</td>
</tr>
<tr>
<td>Notes</td>
<td>This has the same effect as MODE,VRMS</td>
</tr>
</tbody>
</table>
VRMS?

Function: Read true rms voltmeter results
Description: Reads back latest voltmeter results. Sets voltmeter mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by DAV?

Format: VRMS?
or: VRMS,results?
or: VRMS?results

Arguments: results:
 RMS
 SURGE

Reply: RMS:
 8 data values separated by commas
 rms1,2,dc1,2,ac1,2,dbm1,2
SURGE:
 6 data values separated by commas
 pk1,2,cf1,2,surge1,2
no argument:
 14 data values separated by commas
 RMS results then SURGE

Example: VRMS?RMS

Notes: As VRMS? does not send the same data twice but waits instead for the next result, it is not necessary to check the data available bits before sending the VRMS? command.
WAVEFO

Function: Set the output waveform

Description: Selects the output waveform for the signal generator.

Format: WAVEFO,type

Arguments:

- **type:**
 - SINEWA (sine wave)
 - TRIANG (triangle wave)
 - SQUARE (square wave)
 - LEADIN (leading sawtooth)
 - TRAILI (trailing sawtooth)

Reply: None

Example:

```
FREQUE,500
WAVEFO,TRIANG (triangle wave)
OUTPUT,ON
```

Notes: PSM1735 NumetriQ only has SINEWA or SQUARE option
ZERO

Function: Apply or remove the zero

Description: Applies or removes a zero function depending on the measurement mode (same as pressing ZERO key). Performs lead compensation in LCR mode.

Format:

ZERO
ZERO,DELETE
ZERO,DB,offset
ZERO,PHASE,offset

LCR compensation
ZERO,SINGLE
ZERO,SWEEP,steps,start,finish
ZERO,OPEN
ZERO,SHORT
ZERO,STORE
ZERO,RECALL

Arguments:

offset: offset value
steps: LCR sweep compensation steps
start: LCR compensation start frequency
stop: LCR compensation stop frequency

Reply: none

Example: ZERO,SWEEP,100,1e3,1e6
ZERO,OPEN

performs open circuit compensation

Notes:
ZOOM

Function: Sets the display zoom parameters.

Description: Sets the zoom level and data.

Format: ZOOM,level,data1,data2,data3,data4

Arguments:

level:
 0 – normal
 1 – 2 line display (zoom level 1)
 2 – single line display (zoom level 2)

data1:
 first data (zoom level 1)
 or data for single line (zoom level 2)

data2-4:
 other data (zoom level 1)

data consists of line number for channel 1
or line number + 128 for channel 2

Reply: None

Example:
 VRMS
 ZOOM,1,1,12 (level 1, ch1 rms, ch2 rms)

Notes: It is not necessary to send all the parameters, but whatever parameters are sent must be in the correct order.
ZOOM?

Function: Read the display zoom parameters.

Description: Reads the zoom level and data.

Format: ZOOM?

Arguments:

Reply: 5 integers separated by commas:
 level:
 0 – normal
 1 – 2-4 value display (zoom level 1)
 2 – single line display (zoom level 2)
 data1-4:
 zoom data
 data consists of line number for channel 1
 or line number + 128 for channel 2

Example: ZOOM?
 1,1,129,0,0 (level 1, ch1 rms, ch2 rms)

Notes:
command format

*CLS
*ESE,value
*ESE?
*ESR?
*ESR?
*IDN?
*OPC?
*RST
*SRE,value
*SRE?
*STB?
*TRG
*TST?
*WAI

reply format

ABORT
ACTRIM,channel,level,tol
ALARM,latch,sounder
ALARM?
ALARME,value
ALARME?
ALARM1,type,data,high,low
ALARM2,type,data,high,low
AMPLIT,amplitude
ANALOG,type,value1,value2
BANDWI,type
BEEP
BLANKI,on/off,threshold
CONFIG,parameter,data
CONFIG,parameter?
COUPLI,channel,coupling
COUPLI,channel?
CYCLES,cycles
DATALO,function,interval
DATALO,start,records?
DAV?
DAVER,value
DAVER?
DELAY,time
FILTER,type,dynamics
FRA
FRA?
FRA,SWEEP?

single integer data value
company,product,serial no,version
0 or 1
single integer data value
index,time,data… one record per line
single integer data value
single integer data value
freq,mag1,mag2,dB,phase,delay
n lines of FRA? data
FREQUENCY, frequency
FSWEEP, steps, start, end, log
GAINPH
GAINPH?, freq, mag1, mag2, dB, phase, delay
GAINPH, SWEEP?, n lines of GAINPH? data
HARMON, scan, para, h, hmax
HARMON?
 or
HARMON, SERIES?
freq, mag1, mag2, hmag1, hmag2, h1, h2
HARMON, SWEEP?
n lines of HARMON? data
HOLD, on/off
INPUT, channel, type
INPUT, channel?
single integer data value
INTYPE, channel, type
KEYBOA, value
LCR, conditions, param, head
LCR?
freq, mag1, mag2, impedance, phase, R, L, C (series), R, L, C (parallel), tanδ, Q, reactance
or
freq, mag1, mag2, impedance, phase, resistance, reactance, admittance, phase, conductance, susceptance
n lines of data:
freq, QF, tanδ, impedance, phase, L, C, R
LCR, SWEEP?
n lines of data:
freq, QF, tanδ, admittance, phase, L, C, R
or
LOWFRE, on/off
MARKER, on/off, frequency
MODE, type
OFFSET, offset
OUTPUT, type, sweep, phase
PAV, parameter, scaling
PAV?
freq, mag1, mag2, parameter, phase, a, b
PAV, SWEEP?
n lines of VECTOR? data
PHASE
PHASE?
freq, phase
PHASE, STREAM, window
phase, phase, phase, phase, phase,........
PHCONV, convention
PHREF, channel
POWER, integration type
POWER, WATTS?
W, W.f, VA, VA.f, pf, pf.f, Wdc, W.h, freq
POWER, RMS?
rms1, rms2, dc1, dc2, fnd1, fnd2, φ1, φ2
POWER, INTEGR?
Wh, Wh.f, VAh, VAh.f, pf, pf.f, Ah, Ah.f, t
PPORT, value
PPORT?
single integer data value
PROGRAM, function, number
PROGRAM?
CR terminated text string
RANGE, ch, ranging, range
RESOLU, format
REZERO
SCALE, channel, factor
SCALE, channel?
single real data value
SHUNT, channel, resistance
SHUNT, channel?
single real data value
SINGLE, on/off
SPEED, speed
SSWEEP, function, number
START
STATUS, channel?
range number, range text, over/low/ok
STOP
STREAM, enable, window
STREAM, disable
STREAM?
data, data, data, data, data, data,
SUSPEND, on/off
TFA
TFA?
freq, mag1, mag2, dB, phase, delay
n lines of TFA? data
TXA, test, fixture, load, source
TXA?
freq, mag1, mag2, parameter
n lines of TXA? data
TXA, SWEEP?
n lines of TXA? data
TXTEST, test, wind1, wind2
USER?
VECTOR, parameter, scaling
VECTOR?
freq, mag1, mag2, parameter, phase, a, b
n lines of VECTOR? data
VERSION?
datecode, type, cpu, DSP, FPGA, boot
VRMS
VRMS?
RMS? data followed by SURGE?
VRMS, RMS?
rms1, rms2, dc1, dc2, ac1, ac2, db1, db2
VRMS, SURGE?
PK1, PK2, CF1, CF2, SURGE1, SURGE2
WAVEFO, type
ZERO
ZERO, DELETE
ZOOM, level, d1, d2, d3, d4
ZOOM?
level, d1, d2, d3, d4
calibration commands

CALAPP
CALCOM,freq
CALDCO,value
CALFIL,index,value
CALFIL? six real data values
CALFRQ,index,freq
CALFRQ? seven real data values
CALHF,index,value
CALIBR,index,value
CALIBR? single integer data value
CALIDS,string
CALIDS? string
CALOUT,index,value
CALPHA,index
CALRES
CALSAV,password
CALSNO,serial number
CALSTR,string
CALSTR? string
Appendix B – Configurable parameters

All parameters can be accessed using the CONFIG command:

\[\text{CONFIG, number, parameter?} \]
\[\text{CONFIG, parameter, data} \]

<table>
<thead>
<tr>
<th>Number</th>
<th>Function</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>System parameters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Operating mode, (Sets main mode) | 0=RMS Voltmeter
1=Frequency Response analyser
2=Power Meter
3=LCR Meter
4= Vector Voltmeter
5=Harmonic Analyser
6=Transformer Analyser |
| 3 | Bandwidth, (Acquisition Control) (Numetiq series only) | 0=Auto
1=Wide |
| 4 | Autozero, (System Options) | 0=Auto
1=Manual |
| 5 | Low blanking, (System Options & RMS Voltmeter) | 0=Off
1=On |
| 6 | phase convention, (System Options) | 0=-180° to +180°
1=0° to -360°
2=0° to +360° |
| 7 | Generator output, (Output Options) | 1=On
0=Off |
| 8 | Graph, (System Options) | 0=Dots
1=Lines |
Keyboard beep, (System Options)
 0=Off
 1=On

Low frequency mode, (Acquisition Control)
 0=Off
 1=On

Speed “window size”, (Acquisition Control, Enter figures)

Speed, (Acquisition Control)
 0=Very slow
 1=Slow
 2=Medium
 3=Fast
 4=Window

Filter, (Acquisition control)
 0=Normal
 1=Slow
 2=None

Filter dynamics, (Acquisition Control, “Filter normal/slow”)
 0=Auto reset
 1=Fixed time

Baud rate, (Comms-Remote Options, RS232)
 0=19200
 1=9600
 2=4800
 3=2400
 4=1200

Sweep steps, (Sweep Control-Enter step number figures)

Sweep start frequency, (Sweep Control-Enter figures)

Sweep end frequency, (Sweep Control-Enter figures)

Sweep-type, (Sweep Control)
 0=Single
 1=Repeat
22 Conditions, (LCR Meter)
 0=Auto frequency
 1=Manual
 2=Auto shunt

23 Shunt, (System Options)
 0=Default
 1=Manual

Input parameters

24 Input 1 (CH1), (CH1-Input 1)
 0=Voltage input
 2=External shunt

25 Input 2 (CH2), (CH2-Input 2)
 0=Voltage input
 2=External shunt

26 Minimum range (CH1), (CH1-Input 1)
 0=1mv
 1=3mv
 2=10mv
 3=30mv
 4=100mv
 5=300mv
 6=1v
 7=3v
 8=10v

27 Minimum range (CH2), (CH2-Input 2)
 0=1mv
 1=3mv
 2=10mv
 3=30mv
 4=100mv
 5=300mv
 6=1v
 7=3v
 8=10v

28 Autoranging (CH1), (CH1-Input 1)
 0=Full Autorange
 1=Autorange up
 2=Manual
29 Autoranging (CH2), (CH2-Input 2)
 0=Full Autorange
 1=Autorange up
 2=Manual

30 Coupling (CH1), (CH1-Input 1)
 0=ac+dc
 1=ac

31 Coupling (CH2), (CH2-Input 2)
 0=ac+dc
 1=ac

32 Scale (CH1), (CH1-Input, Enter figures)

33 Scale (CH2), (CH2-Input, Enter figures)

34 External shunt (CH1), (CH1-Input, Enter figures)

35 External shunt (CH2), (CH2-Input, Enter figures)

36 Connection (CH1), (CH1-Input, (Numetrix series only)
 0=Main right
 1=secondary left
 2=Differential (both)

37 Connection (CH2), (CH2-Input, (Numetrix series only)
 0=Main right
 1=secondary left
 2=Differential (both)

General parameters

38 Resolution, Comms-Remote Options)
 0=Normal
 1=High
 2=Binary

39 Phase reference, (Acquisition Control)
 0=ch1
 1=ch2
Display parameters

42 Zoom level, (Main Display)
 0=Zoom -
 1=Zoom +
 2=Second zoom +

43 Display zoom characters on line 1
44 Display zoom characters on line 2
45 Display zoom characters on line 3
46 Display zoom characters on line 4

47 Display type, (Main display-datalog or sweep display mode)
 0=Real Time
 1=Table
 2=Graph

Signal generator parameters

48 Generator frequency, (Output Options-Enter figures)
49 Generator amplitude, (Output Options-Enter figures)
50 Generator offset, (Output Options-Enter figures)
51 Generator waveform, (Output Options)
 0=Sinewave
 1=Triangle
 3=Square wave
 4=Leading sawtooth
 5=Trailing sawtooth

52 Frequency step, (Output options-Enter figures)
53 Amplitude step, (Output options-Enter figures)
54 Amplitude dBm (Output options-[116 system control]-Enter figures)
55 Generator after sweep, (Sweep Control)
 0=Off
 1=On
PSM17xx communications manual

Datalog parameters

58 Datalog, (Acquisition Control-memory type)
 0=Disabled
 1=RAM
 2=Non volatile

59 Interval, (Acquisition Control-RAM/Non volatile-Enter time figures)

General parameters

64 Frequency marker, (Sweep Control)
 0=Off
 1=On

65 Marker frequency, (Enter frequency-Graph display-After sweep, alters marker position)

66 Program 1-6 direct load, (System Options)
 0=Disabled
 1=Enabled

67 Parallel port, (Alarm-monitor options)
 0=Disabled
 1=Enabled

Power meter parameters

83 Integration type, (Power meter)
 0=Signed
 1=Magnitude

Streaming parameters

95 Data streaming, (Acquisition control-Mode)
 0=Normal
 1=Streaming

96 Window, (Acquisition control-Mode-streaming-Enter figures)
Harmonic analyser parameters

Scan, (Harmonic analyser)
- 0 = Single
- 1 = Difference thd
- 2 = Series thd

Harmonic, (Harmonic analyser)
- 0, 1 & 2 = 2
- 3 = 3
- 4 = 4
- 5 = 5
- etc up to 64

Harmonics (Max), (Harmonic analyser-scan-series thd)
- 0, 1 & 2 = 2
- 3 = 3
- 4 = 4
- 5 = 5
- etc up to 64

Parameter, (Harmonic analyser)
- 0 = %
- 1 = dB

Bargraph Scale, (Harmonic analyser-scan-series thd-Enter figure)

LCR sweep zero parameters

Frequency, (LCR Mode-Zero)
- 0 = Single
- 1 = Sweep

Sweep start (frequency), (LCR Mode-Zero-Enter figures)

Sweep end (frequency), (LCR Mode-Zero-Enter figures)

Steps, (LCR Mode-Zero-Enter figures)

System parameters

Control, (System options)
- 0 = Volts
- 1 = dBm
117 Step message, (System options)
 0=Enabled
 1=Disabled

118 Display sequence, (Graph display- After sweep alters screen display)
 0=Primary Parameter
 1=Secondary Parameter
 2=Both Parameters

119 Length units, (System options)
 0=Metres
 1=Inch

Transformer analyser parameters
121 Parameter, (Mode-Transformer analyser)
 0=Turns ratio
 1=Inductance
 2=Leakage inductance
 3=AC resistance
 4=DC resistance
 5=Interwinding capacitance
 6=Magnetising current
 7=Return loss
 8=Insertion loss
 9=Single harmonic
 10=thd
 11=Longitudinal balance

122 Fixture, (Mode-Transformer analyser-Auxiliary control)
 0=None
 1=LCR active head
 2=TAF01
 3=TAF02
 4=Impedance analyser interface
 6=High Z interface

123 Winding, (Mode-Transformer analyser-Aux control-TAF01/2)
 TAF01 TAF02
 0=W1 0=W1
 1=W2+3 1=W2
 2=W2 2=W3
Turns Ratio, (Mode-Transformer analyser-Aux control-TAF01/2)

124

<table>
<thead>
<tr>
<th>TAF01</th>
<th>TAF02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0=W1:W2+3</td>
<td>0=W1:W2</td>
</tr>
<tr>
<td>1=W2+3:W1</td>
<td>1=W2:W1</td>
</tr>
<tr>
<td>2=W1:W2</td>
<td>2=W1:W3</td>
</tr>
<tr>
<td>3=W2:W1</td>
<td>3=W2:W3</td>
</tr>
<tr>
<td>4=W1:W3</td>
<td>4=W1:W4</td>
</tr>
<tr>
<td>5=W3:W1</td>
<td>5=W2:W4</td>
</tr>
<tr>
<td>6=W2:W3</td>
<td>7=W3:W2</td>
</tr>
</tbody>
</table>

Source (Various parameter options), (Mode-Transformer analyser-Auxiliary control-Enter figures)

125

Load, (Insertion loss), (Mode-Transformer analyser-Auxiliary control-Enter figures)

126

Nominal (Turns ratio), (Mode-Transformer analyser-Auxiliary control-Enter figures)

127

TAF control parameters (TAF01)

130

Source, (Auxiliary control)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>W1</td>
</tr>
<tr>
<td>1</td>
<td>W2+3</td>
</tr>
<tr>
<td>2</td>
<td>W2</td>
</tr>
<tr>
<td>3</td>
<td>W3</td>
</tr>
</tbody>
</table>

131

Load, (Auxiliary control)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>W1</td>
</tr>
<tr>
<td>1</td>
<td>W2+3</td>
</tr>
<tr>
<td>2</td>
<td>W2</td>
</tr>
<tr>
<td>3</td>
<td>W3</td>
</tr>
</tbody>
</table>

132

Input 1, (Auxiliary control)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>W1</td>
</tr>
<tr>
<td>1</td>
<td>W2+3</td>
</tr>
<tr>
<td>2</td>
<td>W2</td>
</tr>
<tr>
<td>3</td>
<td>W3</td>
</tr>
</tbody>
</table>
Input 2, (Auxiliary control)
0=W1
1=W2+3
2=W2
3=W3

LCR meter parameters

Parameter, (LCR Meter)
0=Auto
1=Capacitance
2=Inductance
3=Impedance
4=Admittance

Sweep, (LCR Meter)
0=Series
1=Parallel

Graph, (LCR Meter)
0=Single
1=Tanδ/QF
2=Resistance

LCR head shunt, (Auxiliary control-fixture-LCR active head)
0=Low
1=Normal
2=High
3=Very high

Graph, (LCR meter-impedance)
0=Linear
1=Log

Phase reference, (Mode-LCR-Zero-LCR Compensation-Enter figures)

Reference (Value), (Mode-LCR-Zero-LCR Compensation-Enter figures)

Reference, (Mode-LCR-Zero-LCR Compensation)
0=Capacitance
1=Resistance
2=Inductance

145 Connection, (LCR Meter)

0=Shunt
1=Divider Zx low
2=Divider Zx high

Gain/Phase analyser parameters

147 Graph (time selection), (FRA)

0=Phase
1=Delay

148 dB offset, (FRA-Enter figures)

149 Gain/Phase margins, (FRA)

0=Disabled
1=Enabled

150 Ratio, (FRA)

0=ch2/ch1
1=ch1/ch2

System parameters

151 Minimum cycles, (Acquisition control-Enter figures)

152 Delay time, (Acquisition control-Enter figures)

153 IEEE address, (Comms-Remote options-interface-GPIB-Enter figures)

154 Interface, (Comms-Remote options)

0=RS232
1=LAN
2=GPIB

Alarm functions (Monitor 1)

156 Monitor 1 data, (Alarm-monitor options)

0=Zoom1
1=Zoom2
2=Zoom3
3=Zoom4
Alarm type, (Alarm-monitor options)
 0=Disabled
 1=Linear
 2=Alarm if high
 3=Alarm if low
 4=Outside window
 5=Inside window

High threshold (Alarm type), (Alarm-monitor options-Enter figures)

Low threshold (Alarm type), (Alarm-monitor options-Enter figures)

Alarm latch (Alarm type), (Alarm-monitor options)
 0=Off
 1=On

Alarm sounder (Alarm type), (Alarm-monitor options)
 0=Enabled
 1=Disabled

Analogue output, (Alarm-monitor options)
 0=Disabled
 1=monitor
 2=Manual

Analogue zero (Analog output), (Alarm-Monitor options-Enter figures)

Analogue scale (Analog output), (Alarm-Monitor options-Enter figures)

Alarm functions (Monitor 2)

Monitor 2 data, (Alarm-monitor options)
 0=Zoom1
 1=Zoom2
 2=Zoom3
 3=Zoom4
168 Alarm 2 type, (Alarm-monitor options)
 0=Disabled
 1=Linear
 2=Alarm if high
 3=Alarm if low
 4=Outside window
 5=Inside window

169 High threshold (Alarm type), (Alarm-monitor options-Enter figures)

170 Low threshold, (Alarm type), (Alarm-monitor options-Enter figures)

Graph functions

173 Graph 2 scaling, (Sweep control)
 0=Auto
 1=Manual

174 Upper limit (Graph 2 scaling), (Sweep control-Enter figures)

175 Lower limit (Graph 2 scaling), (Sweep control-Enter figures)

Phase angle voltmeter parameters

177 Parameter, (Vector voltmeter)
 0=In-phase
 1=Quadrature
 2=Tanδ
 3=Magnitude
 4=Phase
 5=In-phase ratio
 6=rms
 7=rms2/rms1
 8=LVDT diff
 9=LVDT ratio
 10=User interface

178 Scale factor (LVDT), (Vector voltmeter-Enter figures)
Null meter, (Vector voltmeter)
 0=Off
 1=Auto
 2=Manual

Upper limit (Null meter), (Vector voltmeter-Enter figures)

Offset (Parameter), (Vector voltmeter-Enter figures)

Trim parameters

ac trim data, (Trim control)
 0=Disabled
 1=CH1
 2=CH2

ac level (Trim data), (Vector voltmeter-Enter figures)

Trim tolerance (Trim data), (Vector voltmeter-Enter figures)

Other parameters

Steps, (Sweep control)
 0=Log
 1=Linear

Graph 1 scaling, (Sweep control)
 0=Auto
 1=Manual

Upper limit (Graph 1 scaling), (Sweep control-Enter figures)

Lower limit (Graph 1 scaling), (Sweep control-Enter figures)
Newtons4th Ltd. contact details

Please direct all queries or comments regarding the PSM17xx instruments or this manual to:

Newtons4th Ltd.
1 Bede Island Road
Leicester
LE2 7EA
United Kingdom

Tel: (0116) 230 1066 international +44 116 230 1066
Fax: (0116) 230 1061 international +44 116 230 1061

E-mail address: sales@newtons4th.com
 office@newtons4th.com

Web site: www.newtons4th.com

At Newtons4th Ltd. we have a policy of continuous product improvement and are always keen to hear comments, whether favourable or unfavourable, from users of our products. Please telephone, fax, write or e-mail with your comments.