The PPA Series

Leading power measurement solutions with a shared design philosophy

<table>
<thead>
<tr>
<th>Product Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best in class Wideband Accuracy</td>
</tr>
<tr>
<td>New Voltage Attenuator Design</td>
</tr>
<tr>
<td>Wide Frequency Range</td>
</tr>
<tr>
<td>Fast Sample Rate and No-Gap</td>
</tr>
<tr>
<td>Leading Phase Accuracy</td>
</tr>
<tr>
<td>Built in High Precision Current Shunt</td>
</tr>
<tr>
<td>Versatile Interfaces</td>
</tr>
<tr>
<td>Range of PC software options</td>
</tr>
<tr>
<td>PWM Motor Drive Measurements</td>
</tr>
<tr>
<td>External Voltage BNC Connector</td>
</tr>
<tr>
<td>HF + TE Accuracy</td>
</tr>
</tbody>
</table>
How do you choose a modern power analyzer?

In an increasingly digital world, it is common to imagine that the digital stage of a measurement instrument is the key to performance, where the ADC spec appears to be a valid question. However, the unique challenge in all modern power electronics is noise, distortion, phase and frequency components that are only addressed with good hardware design. It is always these elements that dominate accuracy.

Wideband Power Analysis

Unrivalled Wideband Linearity

Our Power analyzers utilise innovative analogue design methods which provide unrivalled accuracy, stability and repeatability. This is complemented by careful selection and design integration of highly linear, no missing code analogue to digital converters, optimised for power measurement. Distorted waveforms such as the inverter drive waveform to the right can be measured at high speed without filtering and without sampling gaps.

Wideband Accuracy

N4L Power Analyzers offer wideband accuracy that is not matched by other instruments. The graph to the right illustrates wideband accuracy of the PPA5500 in comparison to our closest competitor. Selective optimisation of accuracy at line frequency is misleading, because most modern loads are not sinusoidal. The total accuracy of any non-sinusoidal waveform is always dependant on wideband accuracy.

Learn more about N4L’s wideband accuracy here [Doc ref: D000128]
Do not Underestimate Wideband Power Errors
The influence of wideband accuracy when measuring a
distorted DUT such as an inverter in an automotive or
aerospace application is significant. The graph to the right
illustrates the large error contribution from harmonic power
components of a carrier waveform when measuring a modern
PWM motor drive.

Calibrated over the Entire Frequency Range
N4L are the only power analyzer manufacturer with ISO17025
accreditation for power calibration up to 2MHz. Our calibration facility
includes high VA, Power, Phase, Harmonics and Flicker with a Fluke
6105A, proprietary wideband calibration systems covering DC and
10uHz to 2MHz plus 45Hz to 2MHz Calorimetry.

N4L Current Shunt Technology - the Key to Wideband current Accuracy
Since power is the product of in-phase voltage and current components, phase accuracy is a key to any precision power
measurement. Wideband applications become a particular challenge since phase error is directly proportional to frequency, so
low frequency phase accuracy is no assurance of correct wideband power measurement. An innovative planar design with almost
perfect field cancellation and therefore negligible parasitic inductance, achieves a combination of magnitude and phase linearity
that no conventional shunt or current transformer technique can match.

Learn more about N4L shunt technology here [Doc ref: D000125]
Our Technology

Unique hardware structure with Synchronous Windowing gives leading accuracy and stability

An N4L power analyzer is built upon a system topology that prioritises gapless high bandwidth measurements while maintaining exceptional levels of accuracy. Innovative analog design, coupled with digital signal processing techniques proprietary to N4L achieve unrivalled wideband performance, essential for modern day measurement applications which usually exhibit significant wideband distortion.

1. Analogue signal chain with unique voltage and current sensors, solid state ranging and optimum digital design for high speed gapless sampling.
2. Digitised high speed data is transferred across N4L proprietary isolation barrier.
3. FPGA parallel processes and passes data to 2x DSP cores.
4. DSP2 calculates frequency using a DFT algorithm, DSP1 calculates the measurement parameters and passes the data to the main CPU and the Acquisition window is synchronised.

Real-Time Sampling and Measurement Computation

In all conventional digital systems, samples are temporarily stored in buffer memory then processing is carried out on a block of samples. Modern power electronics represents a challenge for such systems because finite memory inevitably limits the sample rate at low frequencies, therefore also the ability to correctly resolve high frequency components in modern switching devices. N4L do not use a buffer or block processing and continuously process the incoming samples. The result is that N4L power analyzers never have to reduce their sample rate, regardless of the fundamental time period or window length.

Conventional Sampling with Buffer Memory and Data Block Processing

Real Time Sampling and Processing

Click here to read N4L’s white paper covering ADC selection theory for power measurement [Doc ref: D000123]
Common Mode Rejection Ratio

N4L’s pulse transformer isolation circuitry, in combination with innovative analogue and signal conditioning circuit design provides 130dB CMRR at 100kHz. This allows the use of precision shunts in noisy applications where products with low resilience to common mode noise require isolated sensors.

<table>
<thead>
<tr>
<th>Model</th>
<th>CMRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closest Competitor</td>
<td>80dB</td>
</tr>
<tr>
<td>N4L PPA5500</td>
<td>130dB</td>
</tr>
</tbody>
</table>

Discrete Fourier Transform allows Synchronous Windowing

<table>
<thead>
<tr>
<th>Harmonic Leakage</th>
<th>DFT (N4L)</th>
<th>FFT (Competitor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Window Restrictions</td>
<td>No</td>
<td>Yes, restricted to (2^n) samples, eg 1024, 2048, 4096 etc</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Good</td>
<td>Degraded</td>
</tr>
<tr>
<td>Processing Cost</td>
<td>High</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Contact N4L for detailed application notes discussing our market leading ADC design
Quick and stable efficiency measurement via Independent input and output Windowing

N4L Power Analyzers independently synchronize with both the input and output waveforms of any product that has differing input and output operating frequencies. This allows integer cycle measurement, which increases both the speed and stability of efficiency measurement, without the "beating" effect that occurs in conventional fixed window techniques.

Torque + Speed Measurement Synchronised to Motor Output measurement

Traditional power analyzers fix the data acquisition window so that the input and output of a DUT share the same window. This may seem intuitively correct when aiming to measure system efficiency, but for all typical asynchronous systems, this introduces error and instability.

Maximum stability, accuracy and speed of efficiency measurement in an asynchronous system requires asynchronous acquisition windows. N4L Power analyzers dynamically adjust the input and output data acquisition windows to achieve optimum efficiency measurement.

N4L offer the widest range of power measurement accessories

- Current Transducers uA's to 1000's Arms
- Plug and Play LEM Interfaces
- Voltage Probes Up to 15kV
- CAN-BUS Interface
- Analogue Interfaces

Click here to read N4L’s white paper on windowing in asynchronous applications [D000120]